39,497 research outputs found

    Torch kit for welding in difficult areas

    Get PDF
    Miniature tungsten inert gas welding torch, used with variously formed interchangeable soft copper tubing extensions, provides inexpensive, accurate welding capability for inaccessible joints. Kit effectively welds stainless steel tubing 0.089 cm thick. Other applications are cited

    Issues of scale for environmental indicators

    Get PDF
    The value of environmental indicators largely depends upon the spatial and temporal scale that they represent. Environmental indicators are dependent upon data availability and also upon the scale for which statements are required. As these may not match, changes in scales may be necessary. In this paper a geostatistical approach to analyse quantitative environmental indicators has been used. Scales, defined in terms of resolution and procedures, are presented to translate data from one scale to another: upscaling to change from high resolution data towards a low resolution, and downscaling for the inverse process. The study is illustrated with three environmental indicators. The first concerns heavy metals in the environment, where the zinc content is used as the indicator. Initially, data were present at a 1km2 resolution, and were downscaled to 1m2 resolution. High resolution data collected later showed a reasonable correspondence with the downscaled data. Available covariates were also used. The second example is from the Rothamsted’s long-term experiments. Changes in scale are illustrated by simulating reduced data sets from the full data set on grass cuts. A simple regression model related the yield from these condcut to that of the first cut in the cropping season. Reducing data availability (upscaling) resulted in poor estimates of the regression coefficients. The final example is on nitrate surpluses on Danish farms. Data at the field level are upscaled to the farm level, and the dispersion variance indicates differences between different farms. Geostatistical methods were useful to define, change and determine the most appropriate scales for environmental variables in space and in time

    Comment on "Nonlinear current-voltage curves of gold quantum point contacts" [Appl. Phys. Lett. 87, 103104 (2005)]

    Full text link
    In a recent Letter [Appl. Phys. Lett. 87, 103104 (2005)], Yoshida et al. report that nonlinearities in current-voltage curves of gold quantum point contacts occur as a result of a shortening of the distance between electrodes at finite bias, presumably due to thermal expansion. For short wires, the electrode displacement induces a thickening of the wire, as well as nonlinearities of the IV curve, while the radius of long wires is left unchanged, thus resulting in a linear IV curve. We argue here that electron shell effects, which favor wires with certain "magic radii," prevent the thickening of long wires under compression, but have little effect on wires below a critical length.Comment: Version accepted for publication in Applied Physics Letter

    Fluctuational Instabilities of Alkali and Noble Metal Nanowires

    Full text link
    We introduce a continuum approach to studying the lifetimes of monovalent metal nanowires. By modelling the thermal fluctuations of cylindrical nanowires through the use of stochastic Ginzburg-Landau classical field theories, we construct a self-consistent approach to the fluctuation-induced `necking' of nanowires. Our theory provides quantitative estimates of the lifetimes for alkali metal nanowires in the conductance range 10 < G/G_0 < 100 (where G_0=2e^2/h is the conductance quantum), and allows us to account for qualitative differences in the conductance histograms of alkali vs. noble metal nanowires

    Theory of metastability in simple metal nanowires

    Full text link
    Thermally induced conductance jumps of metal nanowires are modeled using stochastic Ginzburg-Landau field theories. Changes in radius are predicted to occur via the nucleation of surface kinks at the wire ends, consistent with recent electron microscopy studies. The activation rate displays nontrivial dependence on nanowire length, and undergoes first- or second-order-like transitions as a function of length. The activation barriers of the most stable structures are predicted to be universal, i.e., independent of the radius of the wire, and proportional to the square root of the surface tension. The reduction of the activation barrier under strain is also determined.Comment: 5 pages, 3 figure

    Breaking the habit: measuring and predicting departures from routine in individual human mobility

    No full text
    Researchers studying daily life mobility patterns have recently shown that humans are typically highly predictable in their movements. However, no existing work has examined the boundaries of this predictability, where human behaviour transitions temporarily from routine patterns to highly unpredictable states. To address this shortcoming, we tackle two interrelated challenges. First, we develop a novel information-theoretic metric, called instantaneous entropy, to analyse an individual’s mobility patterns and identify temporary departures from routine. Second, to predict such departures in the future, we propose the first Bayesian framework that explicitly models breaks from routine, showing that it outperforms current state-of-the-art predictor
    • …
    corecore